
BITBUS Extended Broadcast (XBC)

Bitbus Extended Broadcast

(XBC)
A BEUG Recommendation

Page 1/18

Description: BITBUS Extended Broadcast (XBC)

Date: April 11, 2000

Last Change: April 11, 2000

Status: Proposal

Authors: Volker Goller, mocom software GmbH & Co KG

Copyright: All rights reserved. This document is intellectual property of
BEUG - The BITBUS European User's Group
This document can be used for documentation purposes by all BITBUS users and
manufactures if their implementation and products meets this specification.

Contact: e-mail: wg1@bitbus.org

Page 2/18

BITBUS Extended Broadcast (XBC)

Contents

1. Extended Broadcast..4

1.1. What is it?...4

1.2. Where does it fit?...4

1.2.1. Motion control..4
1.2.2. Time triggered control systems...5

1.3. A few definitions...5

2. XBC Layer 2..7

2.1. XBC message formats..7

2.1.1. USER PDU Format...7
2.1.2. Layer2 XBC PDU Format..8
2.1.3. UA - Unnumbered acknowledge control message...8
2.1.4. UP - Unnumbered poll control message ...9

2.2. Master protocol..10

2.3. Slave protocol..12

3. XBC Layer 7..17

3.1. Master..17

3.2. Slave...17

4. BAPI Functions for XBC..18

I. BitbusSetRouting...18

Page 3/18

1. Extended Broadcast

1.1. What is it?

XBC is a broadcast message with optional response. An XBC is send by the master using the broadcast
address FFh. The message contains the node address of a single node that is allowed to respond to this
broadcast. If the slave address is FFh, the XBC is handled like a regular broadcast and no node will
respond.

XBC services do NOT use retries in case of failure - like the more secure standard BITBUS services do.
The basic rule is : lost information is old garbage - nobody need it anymore. So XBC is designed for
fast, cyclic information exchange in the first place.

However, XBC is still BITBUS from the users point of view. The message format is only slightly different
from standard BITBUS messages. The XBC broadcast is still a ORDER and the slave still sends REPLIES.

Best of all: XBC and standard BITBUS communication can be mixed as needed. Because XBC uses the
same structures, similar approaches and does not lock the bus while a XBC is handled, things are easy
to control.

XBC does not make any assumption about the time needed to handle a order by a slave or how
frequent an XBC is send. You can use this service “from time to time” or as frequent as your system
can handle it.

1.2. Where does it fit?

As a rule of thumb XBC fits where:

ï Global data is provided by the master (e.g. machine or plant status info)

ï Synchronised status information is needed (all slaves will receive at the same time)

ï Cyclic data exchange with synchronisation is needed

1.2.1. Motion control

In motion control applications, XBC fits for many purposes:

ï continues path run

ï synchronised torque control

ï synchronised speed control

ï synchronised position control

Page 4/18

BITBUS Extended Broadcast (XBC)

Example:

The XBC will distribute timing information as well as trajectory data. The response will tell the master
about the current servo state:

Master sends an XBC every 10ms. The XBC message contains general information plus a section of
private data for every attached servo. Assuming private data of 16 bytes in a single XBC, its easy to
address 14-15 servos at a time using the full 255 byte message length. With every XBC, another slave
will answer. Assuming we have 10 servos out, every 10th XBC the status of a particular servo is
reported. This is an update rate of 100ms for all servos in this case:

xbc_request_rate : The time between to XBC's (ms)

nodes_with_response : The slaves that should respond

xbc_response_rate := (xbc_request_rate * nodes_with_response)

Example:

nodes_with_response : 10

xbc_request_rate : 10 [ms]

xbc_response_rate := 10 * 10 = 100 [ms]

1.2.2. Time triggered control systems

More general: Every application where several things have to be done in time or updated in time are
well suited for XBC. The selective response from slaves will allow a close control loop for fast reaction
and error handling.

1.3. A few definitions

A few words must be defined first:

Order:

Page 5/18

With BITBUS an ORDER is a message send by the master to a particular slave. It contains
data as well as a command code (in command / response field).

Reply:

An ORDER by the master is handled by an slave. The slave sends a REPLY in response to
this order. The REPLY will always contain a error code and may contain processed data.

Broadcast:

A BROADCAST is an ORDER send to ALL slaves - regardless the nodes address. Only the
master is allowed to send BROADCASTS!

Response / Response permission:

In a master/slave system like BITBUS, the master controls bus access. When a master grants
bus access to the slave, the slave got response permission.

Page 6/18

BITBUS Extended Broadcast (XBC)

2. XBC Layer 2

2.1. XBC message formats

2.1.1. USER PDU Format

LEN FLG RES SD C/R DAT CRC

LEN := length of data + 7, max. 255

FLG := std. BITBUS flags (R, SE, DE, TR)

RES := slave addr with response permission (or FFh for real broadcast)

SD := must be 0 (std. BITBUS source / destination task)

C/R := command/response

DAT := user data

CRC := CRC error check word

The user message format is as compatible as possible with standard IEEE1118 BITBUS messages. The
major differences are:

ï RES: Every node address is allowed except 0. In case 255 the message is a real broadcast - no replies
are allowed. If RES < 255, the node will get response permission.

ï The destination task id is not used. This is because there is no guarantee that on different nodes the
same tasks use the same task numbers. Usually they do - but we have to stress the point that it is
not guaranteed. A broadcast will fail in such a case. The destination task is defined using a different
technique. See Chapter 4. BAPI Functions for XBC. The source task id is stored inside the XBC
protocol driver while a XBC is outstanding.

Page 7/18

2.1.2. Layer2 XBC PDU Format

ADR CTL LEN FLG RES XLEN C/R DAT CRC

ADR := FFh (COMAND), RES (RESPONSE)

CTL := BFh (XID)

LEN := 0. If NOT 0 this is an IEEE1118 XID message!

FLG := std. BITBUS flags (R, SE, DE, TR)

RES := slave address with response permission (or FFh for broadcast)

XLEN := length of data + 7, max. 255

C/R := command/response

DAT := user data

CRC := CRC error check word

The layer 2 message format is what you see on the line if you dive in with a scope or spy. The XID
(EXCHANGE IDENTIFIER) Message is used to transfer XBC's. In IEEE1118, XID is used for an node
address assign technique. With 1118 XID, the first byte after the CTL field is LEN and this must never
be 0. This is where we plug in XBC: With XBC, the LEN field is always 0. The real length is transported
in the XLEN field (whitch is the SD field in a normal BITBUS message). So we can still implement XID
service!

Please note that

ï the basic message format is as close as possible to standard BITBUS and

ï the broadcast (ffh) is send by the master only! A slave will set ADR = RES (0 < RES < 255)

2.1.3. UA - Unnumbered acknowledge control message

ADR CTL CRC

CTL := 73h (UA)

ADR := 1..250 (slave node address)

Page 8/18

BITBUS Extended Broadcast (XBC)

CRC := CRC error check word

The UA message is widely used in IEEE1118 for acknowledgement in NDM (NORMAL DISCONNECT
MODE).

In XBC, the slave with response permission sends an UA immediately after the XBC receives to signal
the master reception. It must be send within a single standard timeout period. The master will start to
poll this node using UP message for a reply.

Please note that UA must not be send to the broadcast address 255 (ffh). It always uses the node
address of the slave.

2.1.4. UP - Unnumbered poll control message

ADR CTL CRC

CTL := 33h (UP)

ADR := 1..250 (slave node address)

CRC := CRC error check word

The UP message is used by the master to poll a selected node. The slave with response permission uses
UP to signals the master that a reply is still not available. If a reply is available the slave answers a UP
with an XBC reply.

Please note that UP must not be send to the broadcast address 255 (ffh). It always uses the node
address of the slave.

Page 9/18

2.2. Master protocol

The master will reformat a user PDU to fit the the layer 2 PDU format. Therefore it has to move the
length field to the SD field, clear the length field, set CTL to XID and adr to ffh. Then the PDU is send:

Page 10/18

BITBUS Extended Broadcast (XBC)

ï If the response node address in the PDU (RES) is ffh, the message is a “real” broadcast and no
answer is expected. However, it is recommended not to send more than one real broadcast back-to-
back. The software should guarantee, that at least a 1ms quiet time is issued after a broadcast to
prevent message buffer runout on the slave side.

Page 11/18

ï If the response node address in the PDU (RES) is other than ffh, the master starts an BITBUS layer2
timeout (~ 14ms @375 kBit/s). If the timeout expires before the slave signals valid reception using an
UA message, the PDU is send back to the user with com_res = 0x91 (TIMEOUT). If any other
response is received (should NEVER happen), the PDU is send back to the user with com_res =
0x90 (PROTOCOL).

The UA message will tell the master, that the PDU was accepted by the the slave and that a response
will soon be available. The master will add the slaves node address to the poll list and mark it as
“unnumbered”.

When the master polls a slave node for an XBC reply, the UP (unnumbered poll) message is used
instead of normal RR/RNR messages. The only possible answer to an UP is another UP or an XBC
reply.

Because the XBC protocol is in any state clearly separated form the normal BITBUS operation, its
implementation is easy and its operation is reliable!

If another xbc broadcast is requested by the user while there is still one outstanding, the outstanding
one is discarded and the associated slave is removed from the poll list.

2.3. Slave protocol

The slave side is a bit more complex, because of the buffer management. An implementor should be
careful not to run in buffer management problems like lost buffers.

The XBC does not make any assumptions about the state of a master or slave. Therefore XBC works in
both states of BITBUS communication: NDM (NORMAL DISCONNECT MODE) and NRM
(NORMAL RESPONSE NODE)

Page 12/18

BITBUS Extended Broadcast (XBC)

If an XBC is received by a slave, it will check the layer 2 PDU's ADR field first. If it is NOT equal to the
own node address, it is a simple broadcast and the layer 2 will pass the message to the user (layer 7)
without any further action.

If the node address is equal, the slave has to discard an oustanding XBC (if exists) without any further
notification. The XBC will be acknowledged using the UA message and passed to the user (layer 7).

Page 13/18

If a slave is polled using the UP command, it checks, if there is an outstanding XBC. If there is no, the
slave will not take any action. If there is one, the slave checks whether the user (layer7) has already
handled the XBC and if it is ready send. In this case the slave sends the XBC reply otherwise it sends an
UP itself.

Page 14/18

BITBUS Extended Broadcast (XBC)

Please note, that the user (layer 7) will not have to worry about whether the current XBC needs an
reply or not (real broadcast). The layer 2 is responsible to keep track of the messages and to free
buffers as needed.

Page 15/18

Page 16/18

BITBUS Extended Broadcast (XBC)

3. XBC Layer 7

3.1. Master

On the masters side, things are simple. A normal BITBUS PDU is formatted. Instead of using the normal
BITBUS SEND command, a different XBC send commend is used (See nect chapter BAPI). The XBC will
be send to the slave and a reply by the slave will be passed back to the user. The reply's PDU is
reformatted to meet the USER PDU specification. That's all.

3.2. Slave

On the slave side, the task that is designed to service the XBC messages must make itself known to the
layer 2 driver. Please note that the SD field is not available. A special operating system call is used to do
this job (see BAPI). Only one task can handle XBC's at a time.

The slave task will have to handle the message and to pass the response back to layer 2 even if it was
a real broadcast and no answer will be send back to the master! The layer 2 will then free the message
buffer as needed - so the user must not worry about buffers!

A typical XBC broadcast will include a global data section with data for all slave nodes (current time,
process state, ..) and data sections specific for a specific nodes (control data, commands, ..).

The XBC reply will include node specific data only - like status, current machine statistics,

Page 17/18

4. BAPI Functions for XBC

The slave provides a BAPI function to provide a common method to make a user task the XBC
handler task.

I. BitbusSetRouting

This function is used to set a routing (make a task known as XBC handler). Currently, only the XBC
routing can be set - but the function is open for future extensions (for example for XID routing).

Parameters:

"service" is used to identify the serive - currently this value is fixed to
BITBUS_SERVICE_XBC.

"taskid" is the id of the task that is capable to handle the XBC orders.

Return value:

-/-

Prototype:

#define BITBUS_SERVICE_XBC 1

INT32 BAPICALL BitbusSetRouting (UINT16 service,

INT16 taskid);

Page 18/18

	1. Extended Broadcast
	1.1. What is it?
	1.2. Where does it fit?
	1.2.1. Motion control
	1.2.2. Time triggered control systems

	1.3. A few definitions

	2. XBC Layer 2
	2.1. XBC message formats
	2.1.1. USER PDU Format
	2.1.2. Layer2 XBC PDU Format
	2.1.3. UA - Unnumbered acknowledge control message
	2.1.4. UP - Unnumbered poll control message

	2.2. Master protocol
	2.3. Slave protocol

	3. XBC Layer 7
	3.1. Master
	3.2. Slave

	4. BAPI Functions for XBC
	BitbusSetRouting

